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Some current approaches to the determination of the charge distributions on 
polyatomic ions are considered. The methods involving cohesive energies of 
ionic solids on the one hand and those using molecular-orbital calculations on 
the other hand are compared and discussed. New charge distributions are 
presented for a series of polyatomic ions. 
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1. Introductory Discussion 

Recent years have seen an interest in determining the charge distributions on 
polyatomic ions through studies on the energetics of ionic crystals. Different 
workers have used differing techniques. Ladd [1], in studying some of the alkali- 
metal cyanides, equated the cohesive energies of the cubic (NaC1 structure type) 
and orthorhombic polymorphs at their transition temperatures. Jenkins and Pratt 
[2] determined the cohesive energies of alkali-metal and ammonium perchlorates, 
as a function of the charge on the oxygen atom, by a minimization technique, 
carried out with respect to the unit-cells' lengths. Yuen, Lister and Nyburg [3] 
analysed calcite and aragonite by a minimization procedure, first suggested by 
Busing [4], but with respect to Coulombic force rather than Coulombic energy. In 
addition to these studies, calculations have been carried out on several polyatomic 
ions by CNDO/2, INDO, NDDO,  extended Hiickel and ab initio MO methods 
[5-13]. Dean and Richards [14] have discussed the meaning of the term "charge on 
an a tom",  and have given results for several compounds of nitrogen. 

In some cases, the results given by the different methods agree strikingly, and agree 
with MO calculations. In other examples, it can be seen that there are some 
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Table 1. Results of charge assignments in polyatomic ions 

M. F. C. Ladd 

[CO3] 2- ion 
Reference Technique zo/e r / A  

Batsanov [37] Use of electronegatives - 0 . 6 6  - -  
Connor  et al. [5] Ab initio MO calculations - 1.00 1.27 
Jenkins et al. [31 ] Cohesive energy calculations - 0 . 2 6  - -  
Jenkins et aL [32] Cohesive energy calculations - 0 . 5 4  1.283 
Ladd [38] Cohesive energy calculations - 0 . 7 6  1.26 
Ladd [39] CNDO/2 and I N D O  MO calculations - 0 . 7 7  1.26 

- 0.80 1.26 
Ladd (this work) Ab initio MO calculations - 0 . 9 5  1.310 

- 0.93 1.283 
Yuen et al. [3] Zero-force minimization calculations - 0 . 9 4  1.283 

- 0 . 9 8  1.283 
Yuen et al. [3] Ab initio MO calculations - 0 . 9 7  1.283 

C N -  ion 
Reference Technique zr~/e r/ik 

Demnynck et aL [7] 
Hillier et aL [8] 
Jenkins et aL [30] 

Ladd [1] 

Ladd [1] 

Ladd [1] 

Ladd (this work) 

Ab initio MO calculations - 0 . 5 7  1.15 
Ab initio MO calculations - 0 . 5 9  1.18 
Cohesive energy calculations - 0 . 5 8  - -  

f l . 0 5  
Cohesive energy calculations - 0 . 6 0  1.1.08 

CNDO/2 and INDO MO calculations - 0 . 3 9  1.05 
- 0 . 3 8  1.08 

Ab initio MO calculations - 0 . 7 0  1.05 
- 0 . 6 1  1 . 0 8  

Ab initio MO calculations - 0 . 5 0  1.05 
- 0.54 1.08 
- 0 . 6 2  1.15 
- 0 . 6 4  1.17 

CIO4- ion 
Reference Technique zo/e r /A  

Connor  et al. [5] 
Cox et aL [9] 
H6jer et al. [10] 
Jenkins et al. [2] 
Ladd (this work) 

Mehrotra  et aL [11] 

Ab initio MO calculations 
Extended Hiickel MO calculations 
CNDO/2  MO calculations 
Cohesive energy minimization 
Ab initio MO calculations 

CNDO/2 MO calculations 

N D D O  MO calculations 

Ab initio MO calculations 

-0 .21  
- 0.39 1.43 
-0 .51  - -  
- 0 . 3 4  
- 0 . 5 8  1.68 
- 0 . 7 3  1.50 
- 0 . 7 4  1.463 
- 0 . 3 3  1.463 
- 0 . 6 4  1.463 
- 0 . 6 7  1.463 
- 0.79 1.463 
- 0.44 1.463 

S O ~ -  ion 
Reference Technique zo/e r /A  

Gianturco et aL [13] K~ fluorescence measurements --0.93 - -  
Hillier et aL [12] Ab initio MO calculations - 0 . 8 6  1.44 

(small basis) 
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SO~- ion 
Reference Technique zo/e r /A  

fl .46 Jenkins [40] Cohesive energy calculations -0.80 1.1.51 

Ladd (this work) Ab initio MO calculations -1.01 1.61 
- 1 . 0 7  1 . 4 4  

Mehrotra et al. [11] Ab initio MO calculations -0.74 1.488 
Murfitt [6] Ab initio MO calculations -0.75 - -  

PO~ a- ion 
Reference Technique zo/e r/]~ 

Ladd (this work) Ab initio MO calculations -1.29 1.63 
- 1.35 1.555 

Mehrotra et al. [11] Ab initio MO calculations -1.05 1.555 
Murfitt [6] Ab initio MO calculations -1.30 - -  

disturbing variations in the charge distribution in one and the same ion; Table 1 
indicates some of these situations. One has to consider why this should occur, and 
what the most reliable procedure is for evaluating these charge distributions and, 
hence, cohesive energies and dependent parameters. 

The effect of  a charge distribution in a polyatomic ion on the cohesive energy of an 
ionic solid has been discussed earlier [15-18]. However, Ladd [19] first showed that 
charge distributions could be obtained by calculations in which the cohesive energies 
of polymorphs were equated at their transition temperatures. Subsequently, other 
workers adopted this approach, some with modifications (Table 1). There are 
certain weaknesses in the approach through cohesive energies which cannot be 
overcome in a completely satisfactory manner. 

In the calculation of  cohesive energy from an electrostatic model, the largest 
contribution comes from the Coulombic energy, and this quantity is clearly defined 
through a Madelung constant. The repulsion energy is the second largest term. 
With crystals which are isotropic, and where compressibility data are available, the 
repulsion energy can be calculated reliably [1] (Eq. (3)). I f  the term-by-term 
calculation is used [2] (Eq. (1)) the repulsion exponent p has to be assigned, and the 
so-called basic radii have also to be chosen. Since p cannot be a constant for 
different solids, if it is forced to be, then, for a correct cohesive energy, the error 
in p must be compensated by a corresponding adjustment in a parameter which 
correlates with p, such as a basic radius. Among a series of interconnected com- 
pounds, like the alkali-metal halides or the alkaline-earth-metal chalcides, a 
self-consistent set of  basic radii can be deduced [20]. For a few isolated compounds, 
the corresponding procedure is not well defined [21] and, thus, of unknown 
precision. 

Another technique that has been used involves a least-squares minimization of the 
cohesive energy with respect to physical and structural parameters. This method 
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was introduced by Busing [4]: it has certain questionable features. For example, in 
cubic SrCI2, the cohesive energy was found to be -2166 kJ mol-i. The repulsion 
energy was quoted as 568 kJ mol- 1 (0.25 of the total electrostatic energy) and the 
van der Waals energy as -425 kJ mol-1 (0.20 of the cohesive energy). Among 
ionic compounds such as the alkali-metal halides and the alkaline-earth-metal 
chalcides, for which adequate data are available for calculating p, it is found that 
the repulsion energies usually lie between 0.09 and 0.13 of the corresponding 
electrostatic energies [1, 22] with the van der Waals energies between 0.01 and 0.05 
of the cohesive energy. Other recent results [23] support these conclusions. Thus, 
the values quoted above for SrC12 lie well outside these ranges, and one may need, 
therefore, to consider possible correlation effects between the parameters which are 
refined. Well-known correlation effects arise, for example, between atom tempera- 
ture factors, intensity scale factors and atom occupancy factors in the least-squares 
refinement of a crystal-structure determination. 

Calculation of the cohesive energy of SrC12 by the method of Ladd [1, 24], gives 
-2100 kJ mol-1, insignificantly different from Busing's value, but in which the 
repulsion energy is 300kJ mo1-1 and the van der Waals energy about -100 
kJ mol-1. It is interesting that the value of p/re, where re is the equilibrium interionic 
distance, implied by Busing's results would be about 0.25. Hence, the van der Waals 
energies would then seem to be repulsive rather than attractive [1]. Although a 
reasonable value for the cohesive energy may be obtained, the multi-dimensional 
surface which is being explored by least squares contains many minima, and unless 
minimization begins near the correct solution, the desired parameter may be moved, 
inadvertently, into a secondary minimum. 

Similar reservations may attach to more recent implementations of the minimiza- 
tion technique [2, 3]. One would expect that, from good crystallographic studies, 
unit-cell dimensions and atomic coordinates are known with sufficiently high 
precision to represent constants of the structure. It is possible that relaxing the 
structural parameters is equivalent to obtaining a best fit for the energy parameters, 
but that correlation prevents these two effects from being disentangled. How- 
ever, Yuen, Lister and Nyburg [3] obtained very satisfactory results for the 
[COa] 2- ion, as judged against MO calculations, but further applications of their 
technique will be needed before it can be appraised fully. 

It is noteworthy that, where good structural and energy data are available, the 
charge distributions obtained through cohesive energy calculations are in good 
agreement with those given by ab initio MO calculations. One important reason for 
determining charge distributions is that one is then able to proceed, through 
cohesive energies, to the evaluation of thermodynamic parameters which cannot be 
realized experimentally. In view of this application and of the paucity of energy 
data for crystals containing polyatomic ions, it may be best first to calculate charge 
distributions directly by MO methods and then to use the results in the evaluations 
of cohesive energies. This paper presents the results of some of the first of these 
calculations. 
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2. Experimental and Concluding Discussion 

Charge distr ibutions on a series of polyatomic ions have been evaluated by an 

ab ini t io method [25, 26], using a 6-31G basis for first-row elements, but  a 4-31G 
basis for second-row elements and for boron.  For  each species, calculation of 
the total  electronic energy was carried out over a range of geometry which both  

included the energy m i n i m u m  and spanned the published values of the geometry of 
the species. In  this work, results are reported mainly for single-parameter ions, that  
is, those species in each of which the geometry is, through symmetry, governed by 

a single parameter,  a bond  length. 

The results for each ion have been treated in two ways. Firstly, the charge zx on 
the more electronegative a tom zx, in the species at equil ibr ium geometry, has been 

fitted to a quadrat ic  curve, in terms of the distance parameter  r between the two 
dissimilar atoms in the complex ion. The results are presented in Table 2. Secondly, 

the energy m i n i m u m  has been obtained by fitting a quadrat ic  curve, by a similar 
technique, to five energy/distance data nearest to the energy min imum:  the geometry 
and charge parameters at this m i n i m u m  are listed in Table 3. In  all cases the r.m.s. 
errors in fitting the polynomials  were less than 10 -a. In  using Table 3 to draw 

comparisons with other results, it is clearly essential to consider the same value of r. 
Regrettably, several results for charge distr ibutions on polyatomic ions considered 
herein, have been published without a clear statement of the corresponding values 
of r. Again,  it is not  sufficient to quote a reference to a structure determinat ion.  
For  example, in the precise analysis of the structure of aragonite [27], the significantly 
different C - - O  distances of 1.48 and 1.50 A obtain.  

Table 2. Constants of the polynomial zx = ar z + br + c 

Literature 
Ion range of r/A~ X a/e A -  2 b/e A - 1  c/e 

[NH4] + 0.94-1.06 N 2.9762 - 6.9738 3.0929 
[NO2] + 1.12-1.24 O 1.9940 - 4.3970 2.5448 
[PH4] + 1.36-1.44 H - 0.41071 1.3125 - 0.83805 
[BF4] - 1.36-1.46 F 1.5179 -4.5291 2.7816 
[BH4]- 1.22-1.30 H 0 .07143 -0.26100 -0.06692 
[C104] - 1.46-1.56 O 1.3447 - 3.4711 1.4553 
[CN] - 1.08-1.19 N 2.3181 - 6.3428 3.6063 
[HF2]- .1.10-1.18 F 0.80357 - 1.7746 0.19373 
IN3] - 1.10-1.20 N - 1.0268 3.1416 -2.7814 
[NO3] - 1.22-1.30 O 1.0714 - 2.5970 1.0294 
[OH]- 0.94-1.02 O 1.0714 - 1 . 5 0 0 0  -0.71466 
[CN2] 2- 1.14-1.28 N 3.7500 - 10.4167 6.1799 
[CO3] 2 - 1.24-1.34 O 2.6786 - 7.4493 4.2145 
[SO~] 2 - 1.44-1.54 O 1.6445 - 4.6580 2.2298 
[PO4] 3 - 1.54-1.66 O -- 1.6368 5.6002 - 6.0687 

N' is an outer nitrogen atom 
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Table 3. Ion parameters at equilibrium geometry 

M. F. C. Ladd 

Ion Symmetry Distance/A Charges/e 

[NH4] + 213m rN_a 1.012 zN -0.916 za 0.479 
[NO2] + oom rN-o 1.207 zN 0.714 Zo 0.143 
[PH4I + 743m rp-a 1.401 zx~ 0.220 za 0.195 
[BF4]- 7~3m rB-F 1.417 ZB 1.352 ZF --0.588 
[BH4]- 7~3m rB-a 1.239 zB 0.124 za --0.281 
[C104]- 7~3m rcl-o 1.678 Zca 1.332 Zo - 0.583 
[CN] - oo rc-r~ 1.174 Zc - 0.355 zr~ - 0.645 b 
[HF2]- oom ra-r 1.145 za 0.570 zr -0.785 
[N,]- o o m  rN.-N- 1.176 a zN. --0.507 zN .  0.014 
[NO3]- gin2 rN-o 1.260 z~ 0.626 Zo --0.542 
[OH]- oo ro-E 0.983 Zo - 1.154 za 0.154 
[CN2] 2- oom rc-N 1.247 zc -0.044 zr~ -0.978 
[CO3] 2- ~m2 rc-o 1.310 zc 0.841 Zo -0.947 
[SO4] 2 - 7t3m rs-o 1.613 Zs 2.020 Zo - 1.005 
[PO4] 3- ?~3m rp_o 1.632 zp 2.156 Zo - 1.289 

a N '  a n d  N" are outer and central nitrogen atoms respectively. 
b rc-N different from that in Table 1 (Ladd [1]). 

The charge dis t r ibut ions  are considered to  represent  a rel iable self-consistent set 
which can be appl ied  to var ious  s t ructural  and  energetic calculat ions.  In  a number  
o f  the ions, the change in charge with the distance r is not  large. Since inclusion in 
a s tructure would,  in general ,  be expected to p roduce  small  pe r tu rba t ions  on the 
free-ion geometry,  then insofar  as these per turba t ions  would  manifest  themselves 
as changes in r, so the differences between the charge dis t r ibut ions  t abu la ted  and 
those existing in cor responding  solids can reasonably  be expected to be negligible 
to a g o o d  approx imat ion .  Thus,  the da ta  may  be used in crystals,  subject  to an 
ad jus tment  in terms of  the value o f  r found  f rom crys ta l lographic  studies. There  
appears  to be no simple re la t ionship between zx and r for  species o f  a given 

symmet ry  type. 

One should  r emark  on the ra ther  large differences between the calculated equil ib-  
r ium in te ra tomic  distances (r)  in some species and the values a l ready repor ted  for  
the same parameters .  F o r  example,  in [SO4] 2- ,  the calculated value o f  r is 1.61 A,  
whereas repor ted  values range f rom 1.44 to 1.54 A. Again,  in [C10~]-,  r is 1.70 A,  
and repor ted  values range f rom 1.46 to 1.56 A. In view of  the fact  that  a number  
o f  the exper imenta l ly-der ived r values per ta in  to X-ray  analysis, some quite early, 
on metal  salts wherein no correct ions were made for  absorp t ion  effects, the val idi ty  
o f  such values  may  be quest ioned.  The precise analyses of  calcite [28, 29] give C - - O  
values o f  1.294(4) and  1.283(2) A, their  difference being insufficiently significant to 
suggest an obvious preference. I t  is wor th  remember ing  also that  X-ray  bond  
lengths are distances between the electron density maxima,  and  will not,  in general ,  
be the same as equi l ibr ium internuclear  distances. The differences will depend  upon  
the polar izabi l i t ies  of  the species, and  may  be expected to  vary f rom one po lya tomic  

ion to another .  
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Values have been reported for the dipole moments and quadrupole moments of 
some of the ions studied herein [3, 30-32]. It seems to the author that they are 
simply other ways of expressing the charge distributions, for given values of r. In 
the absence of corresponding experimental measurements, they would appear to 
add very little of substance. The calculated dipole moment for C N -  has been 
reported at values between 1.3 x 10 -30 C m and 6.1 x 10 -30 C m [30]. The 
quadrupole moment 0~ for CO~- has been reported at - 1.0 x 10 -a9 C m 2 [31] 
and +3.9 x 10 -39 C m2: it has been compared with that for CO2 [31], - 1 . 0  x 
10-39 C m ~. A valid comparison would be with the isoelectronic BFa, for which 0~ 
is +4.0 x 10 -a9 C m 2, a result that supports a value for z0 in the CO~- ion of 
about - 0.95. 

The main difficulties with all classical models for cohesive energy calculations may 
be summarized in the following two points: 

a) Except for the halides and chalcides of both the alkali metals and the alkaline- 
earth metals, and perhaps a very few other simple ionic crystals, there is no way 
of obtaining an independent check on the reliability of a cohesive energy model. 

b) Among ionic compounds, in which 85-90~ of the cohesive energy is electro- 
static, any repulsion energy function which is equivalent to a high inverse power 
of the interionic distance will lead to satisfactory cohesive energies which will 
compare well with the thermodynamic (Born-Haber cycle) values, having 
regard to the precision of such data as compressibilities on the one hand, and of 
enthalpies of sublimation of metals and enthalpies of formation of the ionic 
solids on the other. 

It does not follow necessarily that a model tested and found satisfactory on the 
simple cubic halides will be valid for structures of greater complexity and lower 
symmetry. 

The van der Waals energy terms can be evaluated adequately in a manner [33, 34, 24] 
which avoids the uncertainties in estimating the so-called characteristic energies 
[4, 23, 35, 36]. If the cohesive energy is required at temperatures other than 0 K, 
as is usual, then it must be borne in mind that the omission of the equation-of-state 
function [1, 36] will produce a discrepancy which is between 2~  and 3~ of the 
cohesive energy. In the particular case of sodium chloride, the best measure of the 
cohesive energy is probably - 774 kJ mol-  ~. If the equation-of-state function is 
omitted, the result is - 7 5 7  kJ mol-  ~. It may be noted that while this function is 
explicit in derivatives of the Born-Mayer type of equation [17], it is implicitly 
present in the Huggins-Mayer term-by-term calculation [2], for it must be included 
in the assigned value of p. It is suggested that these points are not insignificant where 
cohesive energies are used to obtain thermodynamic parameters, as the uncertainties 
in the energies must be transmitted to the derived quantities. 

It seems likely, however, that where cohesive energies lead to charge distributions 
which are in good agreement with the currently best MO calculations (Table I), 
such energies may be taken to be reliable. 
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Fur ther  work will be directed towards two-parameter  species. Prel iminary results 
along these lines have shown that in ClOy,  for example, equi l ibr ium geometry 

occurs for C1-O = 1.65 A, O-C1-O = 111 ~ and Zo = - 0 . 7 0  e. Cohesive energy 
results for NaC1Oa [41] lead to a value of - 0 . 8  e for Zo: these authors take note of 
earlier ab initio and  other theoretical estimates of Zo, the most  recent of which [5] 
gives the numerically smaller value of - 0 . 2 4  for z0. 
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